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Vector 

Vectors: composition and resolution 
A scalar is a quantity that is completely specified by a number and unit. It has magnitude but no 

direction. Scalars obey the rules of ordinary algebra. Examples: mass, time, volume, speed, etc.  

A vector is a quantity that is specified by both a magnitude and direction in space. Vectors obey the laws 

of vector algebra. Examples are: displacement, velocity, acceleration, force, torque, momentum, etc. 

Vector Representation 

Algebraic Method 

Vectors are represented algebraically by a letter (or symbol) with an arrow over its head (Example: 

velocity by  ⃗, momentum by  ⃗⃗) and the magnitude of a vector is a positive scalar and is written as either 

by |A| or  ⃗. 

Geometric Method 

Using graphs or line with arrow to represent vectors can be termed as geometric method of 

representation. 

Vector Addition 

A single vector that is obtained by adding two or more vectors is called resultant vector and it is 

obtained using the following two methods 

Graphical method of vector addition 

Graphically vectors can be added by joining their head to tail and in any order their resultant vector is 

the vector drawn from the tail of the first vector to the head of the last vector. In Figure 1 graphical 

technique of vector addition is applied to add three vectors. The resultant vector R = A + B + C is the 

vector that completes the polygon. In other words, R is the vector drawn from the tail of the first vector 

to the tip of the last vector. 
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The parallelogram law states that the resultant R of two vectors A and B is the diagonal of the 

parallelogram for which the two vectors A and B becomes adjacent sides. 

The magnitude of the diagonal (resultant vector) is obtained using cosine law and direction (i.e. the 

angle that the diagonal vector makes with the sides) is obtained using the sine law. 

 

Components of Vector 

Considering Figure 3 below, components of the given vector A are obtained by applying the 

trigonometric functions of sine and cosine. 

 

 

Because Ax and Ay are perpendicular to each other, the magnitude of their resultant vector is obtained 

using Pythagoras theorem. 

 

Vector addition in Unit Vector Notation 
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Unit vector 

A unit vector is a vector that has magnitude of one and it is dimensionless and a sole purpose of unit 

vector is to specify a direction. It is usually denoted with a ―hat‖. ( ̂) 

Consider two unit vectors A and B, then A and B can be added component wise as shown below. 

 

Questions and Problems 

1. Vector A has magnitude of 8units and makes an angle of 45
0
 with the positive x-axis. Vector B also 

has the same magnitude of 8units and directed along the negative x-axis. Find 

a. The magnitude and direction of   ⃗   ⃗⃗ 

b. The magnitude and direction of  ⃗   ⃗⃗ 

2. Given the displacement vectors  ⃗           and  ⃗⃗          . Find the magnitudes of the 

vectors:      (a)        (b)      

3.  If                  and          , then find a and B such that          . 

4. A point P is described by the coordinates (x, y) with respect to the normal Cartesian coordinate 

system shown in Fig. below. Show that (x‘, y‘) the coordinates of this point in the rotated coordinate 

system, are related to (x, y) and the rotation angle   by the expressions 
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Kinematics and Dynamics 

Motion in One Dimension 

Position, Velocity, and Speed 

A particle‘s position is the location of the particle with respect to a chosen reference point that we can 

consider to be the origin of a coordinate system. 

Displacement  

The displacement of a particle is defined as its change in position in some time interval. As the moves 

from an initial position xi to a final position xf, the displacement of the particle is given by: 

 ⃗           

Whereas distance is the length of a path followed by a particle and can be denoted by  . 

Note: - distance is a scalar physical quantity whereas displacement is vector.  

Average velocity and average speed 

Average velocity 

The average velocity of a particle is defined as the particle‘s displacement divided by the time interval 

during which that displacement occurs: 

                   
            

          
 

 ⃗⃗    
  

  
 
 ⃗

 
 

Average speed 

The average speed of a particle is defined as the total distance traveled divided by the total time interval 

required to travel that distance: 

                
              

          
 

     
      

  
 
 

 
 

Example: - 
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Find the displacement, average velocity, and average speed of the car in the figure below between 

positions   and F. 

 

 

 

Solution 

Displacement                                                                                          Average velocity 

 

 

 

 

 

Average speed                                                                    

     
      
  

 
    

     
          

Instantaneous Velocity and Speed 

Instantaneous Velocity 

The instantaneous velocity of a particle is defined as the limit of the ratio 
  

  
 as    approaches zero.  

         
    

  

  
 

By definition, this limit equals the derivative of x with respect to t, or the time rate of change of the 

position: 

      
  

  
 

The instantaneous speed of a particle is equal to the magnitude of its instantaneous velocity. 
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Acceleration 

Average acceleration 

The average acceleration of a particle is defined as the ratio of the change in its velocity    divided by 

the time interval    during which that change occurs: 

  
  

  
 
     

     
 

Instantaneous acceleration 

The instantaneous acceleration is equal to the limit of the ratio 
  

  
 as    approaches 0.  

         
    

  

  
 

By definition, this limit equals the derivative of  ⃗ with respect to t, or the time rate of change of the 

velocity: 

  ⃗  
  ⃗⃗⃗

  
 

Example: -  

The velocity of a particle moving along the   axis varies in time according to the expression   ( )  

(      )   , where t is in seconds.  

(A) Find the average acceleration in the time interval           to        ec. 

Solution: 

    (   )  
(    ( ) ) 

 
       

    (   )  
(    ( ) ) 

 
       

 ⃗  
     

     
 
           

(   )   
         

(B) Determine the acceleration at t = 2 sec. 

  ⃗  
  ⃗⃗⃗

  
 
 (      )

  
       

  ( ) 

  
         

One-Dimensional Motion with Constant Acceleration 
Equations of motion for one dimensional motion is given by assuming a constant acceleration, hence 

from 

  
     

     
 

Using the initial time to be zero 
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                                                                                                                               (1) 

 

Average velocity 

                                                                            
     

 
                                                  (2) 

Displacement 

 ⃗                 

         (
     

 
)   

Substitute the value of   

         (
     

 
) (
     

 
) 

         
  
    

 

  
 

  
    

    (     ) 

And again using equation (1) 

         (
     

 
)   

Substituting the value of    

         (
        

 
)   

 

                                                                          
 

 
                                                         (3) 

Example 1 

A track covers 40m in 8.5s while smoothly slowing down to a final speed of 2.8m/s. Find 

a) Its original speed    

b) Its acceleration 

Answer: 

a) 6.6m/s      b) 0.447m/s
2
 

Example 2 

A jet plane lands with a speed of 100m/s and slows down at a rate of 5m/s
2
 as it comes to rest. 

a) What is the time interval needed by the jet to come to rest?  

b) Can this jet land on an airport where the runway is 0.8km long? 

      Answer:          &       hence it cannot land  

Exercise  
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1. At     , a particle moving in the x-y plane with constant acceleration has a velocity of    (   

  ) m/s, and is at the origin. At     , the particle‗s velocity is    (     ) m/s. Find (a)  the 

acceleration of the particle (b) Its coordinates at      

2. Fish swimming in a horizontal plane has velocity     (     ) m/s at a point in the ocean where the 

position relative to a certain rock is    (      ) . After the fish swims with constant acceleration 

for    , its velocity is    (      )m/s. Find  

a) The acceleration of the fish  

b) If the fish maintains this constant acceleration, determine its position at      ? 

Free Fall Motion/vertical motion/ 

The motion of an object near the surface of the Earth under the control of gravitational force is called 

free fall. In the absence of air resistance, all objects fall with constant acceleration, g towards the surface 

of the Earth. On the surface of the Earth, the generally accepted value of acceleration due to gravity is 

9.8 m/s
2
. This acceleration due to gravity varies with latitude, longitude and altitude on the Earth‗s 

surface. And it is greater at the poles than at the equator and greater at sea level than at the top mountain 

areas. There are also local variations that depend upon geophysics. The value of 9.8 m/s
2
, with only two 

significant digits, is true for most places on the surface of the Earth up to altitudes of about 16 km. 

   Example A girl throws a ball upwards, with an initial speed of v = 15 m/s. 

Neglecting air resistance. (a) How long does the ball take to return to the girl‗s 

hand? (b) What will be its velocity when it reaches at the girl‘s hand? 

Given: g = -10m/s
2
;    = 15m/s;  ⃗    

a. using the expression: 

 ⃗         
 

 
    

       

b.          

              
 (3sec) 
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Projectile Motion  
Projectile is any object thrown obliquely into the space. The object which is given an initial velocity and 

afterwards follows a path determined by the gravitational force acting on it is called projectile and the 

motion is called projectile motion. 

 

  

 

 

 

 

 

 

The path described by the projectile from the point of projection to the point where the projectile reaches 

the horizontal plane passing through the point of projection is called trajectory. The trajectory of the 

projectile is a parabola. 

Basic assumptions in projectile motion 

 The free fall acceleration (g) is constant over the range of motion and it is directed downward. 

 The effect of air resistance is negligible. 
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For projectile motion       and      (Because there is no force acting horizontally) 

The horizontal position of the projectile after some time t is: 

  

 

 

 

 The vertical position of the projectile after some time t 

  

 

 

 

 

 

The vertical components of the 

velocity 

 

 

 

Horizontal Range and Maximum Height  
 When the projectile reaches the maximum height (the peak),      

  

 

Hence time to reach maximum height is 

  

 

 

And the expression for the maximum height will be 

 

 

 

 

 

The Range(R) is the maximum horizontal displacement of the projectile covered in a total time of flight. 
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Exercise 1: 

A rocket is fired with an initial velocity of 100m/s at an angle of 55
0
 above the horizontal. It explodes on 

the mountain side 12s after its firing. What is the x-and y- coordinates of the rocket relative to its firing 

point? 

Answer:          and        

Exercise 2: 

A plane drops a package to a party of explorer. If the plane is travelling horizontally at 40m/s and is 100m 

above the ground, where does the package strike the ground relative to the point at which it is released? 

 

Answer:        

 

 

 

 

 

 

 

Exercise 3 
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An astronaut on a strange planet can jump a maximum horizontal distance of 15m if his initial speed is 3m/s. 

What is the free fall acceleration on the planet? 

Exercise 4 

A ball is thrown with an initial velocity of (         ) m/s. When it reaches the top of its trajectory what is its 

velocity? 

Exercise 5 

A projectile is fired in such a way that its horizontal range is equal to three times its maximum height. What 

is the angle of projection?  

Exercise 6 

 Two projectiles are thrown with the same initial velocity, one at an angle   and the other at an angle of 

9   . (a) Can both projectiles strike the ground at the same distance from the projection point?  

(b) Can both projectiles be in air for the same time interval? 

Uniform Circular motion 
Uniform Circular Motion is motion of objects in a circular path with a constant speed. Objects moving 

in a circular path with a constant speed can have acceleration. 

  
  

  
 

There are two ways in which the acceleration can occur due to: 

 change in magnitude of the velocity 

  change in direction of the velocity 

For objects moving in a circular path with a constant speed, acceleration arises because of the change in 

direction of the velocity. 

Hence, in case of uniform circular motion: 

 Velocity is always tangent to the circular path and perpendicular to the radius of the circular path. 

 Acceleration is always perpendicular to the circular path, and points towards the center of the circle. 

Such acceleration is called the centripetal acceleration 

A car moving along a circular path at constant speed experiences uniform circular motion. 
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As a particle moves from A to B, its velocity vector changes from vi to vf . 

The average acceleration is defined by the following expression: 

  

Two triangles are similar if the angle between any two sides is the same for both triangles and if the 

ratio of the lengths of these sides is the same. Hence this enables us to write a relationship between the 

lengths of the sides for the two triangles: 

 

 

Or  

 

The ratios of corresponding sides are proportional 

Where v = vi = vf and r = ri = rf . This equation can be solved for "  " and the expression so obtained can 

be substituted into to give the magnitude of the average acceleration   
  

  
 over the time interval for the 

particle to move from A to B: 

In addition, the average acceleration becomes the instantaneous acceleration at point A. Hence, in the 

limit     , the magnitude of the acceleration is 
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Newton’s Laws of Motion 

Newton’s First Law and Inertial Frames 

Newton‘s first law of motion, sometimes called the law of inertia, defines a special set of reference 

frames called inertial frames. This law can be stated as follows 

If an object does not interact with other objects, it is possible to identify a reference frame in which the 

object has zero acceleration. 

Any reference frame that moves with constant velocity relative to an inertial frame is itself an inertial 

frame. 

A more practical statement of Newton‘s first law of motion: 

In the absence of external forces, when viewed from an inertial reference frame, an object at rest 

remains at rest and an object in motion continues in motion with a constant velocity (that is, with a 

constant speed in a straight line). 

In simpler terms, we can say that when no force acts on an object, the acceleration of the object is 

zero.  

If nothing acts to change the object‘s motion, then its velocity does not change. From the first law, we 

conclude that any isolated object (one that does not interact with its environment) is either at rest or 

moving with constant velocity.  

The tendency of an object to resist any attempt to change its velocity is called inertia. 

Newton’s Second Law 
When viewed from an inertial reference frame,  

The acceleration of an object is directly proportional to the net force acting on it and inversely 

proportional to its mass. 

 

Unit of Force 

The SI unit of force is the newton, which is defined as the force that, when acting on an object of mass 1 

kg, produces an acceleration of 1 m/s
2
. 
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The Gravitational Force and Weight 

 

The attractive force exerted by the Earth on an object is called the gravitational force Fg. This force is 

directed toward the center of the Earth,3 and its magnitude is called the weight of the object. 

 

Weight is not an inherent property of an object, but rather a measure of the gravitational force between 

the object and the Earth. Thus, weight is a property of a system of items—the object and the Earth. 

A freely falling object experiences an acceleration g acting toward the center of the Earth. Applying 

Newton‘s second law        to a freely falling object of mass m, with a = g and F = Fg , we obtain 

 

Newton’s Third Law 
If two objects interact, the force F12 exerted by object 1 on object 2 is equal in magnitude and opposite 

in direction to the force F21 exerted by object 2 on object 1: 

 

The forces that object 1 exerts on object 2 may be called the action force and the force of object 2 on 

object 1 the reaction force. In reality, either force can be labeled the action or reaction force. 

 

 Forces always occur in pairs, or that a single isolated force cannot exist. 

 

 The action force is equal in magnitude to the reaction force and opposite in direction.  

 In all cases, the action and reaction forces act on different objects and must be of the same type. 

Equilibrium 

If the acceleration of an object that can be modeled as a particle is zero, the particle is in equilibrium. 

Conditions of equilibrium can also be stated or written as: 

∑    

∑     

∑     

Example: - 1 

A traffic light weighing 122 N hangs from a cable tied to two other cables fastened to a support, as in 

Figure below. The upper cables make angles of 37° and 53° with the horizontal. These upper cables are 
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not as strong as the vertical cable, and will break if the tension in them exceeds 100 N. Will the traffic 

light remain hanging in this situation, or will one of the cables break? 

 

 

 

 

 

 

 

Solution 

Assuming that the traffic light is in equilibrium we can draw the free body diagram as 

 

∑     

 

 

 

                                       Traffic light suspended by cables 

 

∑     

 

 

∑     
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After combining and substituting the above equations we get 

Both of these values are less than 100 N, so the cables will not break 
Example: - 2 

Two blocks of masses m1 and m2, with m1 + m2, are placed in contact with each other on a frictionless, 

horizontal surface, as in Figure below. A constant horizontal force F is applied to m1 as shown. (A) Find 

the magnitude of the acceleration of the system. (B) Determine the magnitude of the contact force 

between the two blocks. 

Solution 

 

The free body diagrams for the forces are given below 

 

  

 

 

 

 

 

P12 is the contact force exerted by m1 on m2, and P21 is the contact force exerted by m2 on m1 

Example:-3 the Atwood Machine 

When two objects of unequal mass are hung vertically over a frictionless 

pulley of negligible mass, as in Figure below, the arrangement is called an 

Atwood machine. The device is sometimes used in the laboratory to measure 
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the free-fall acceleration. Determine the magnitude of the acceleration of the two objects and the tension 

in the lightweight cord./m2 > m1/ 

 

 

 

 

Free-body diagrams for the two objects 

  

 

 

 

When Newton‘s second law is applied to object 1& 2, we obtain 

 

 

                                       Combining the above equations we get 

 

 

 

 

Frictional force 
When an object is in motion either on a surface or in a viscous medium such as air or water, there is 

resistance to the motion because the object interacts with its surroundings. We call such resistance a 
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force of friction. Forces of friction are very important in our everyday lives. They allow us to walk or 

run and are necessary for the motion of wheeled vehicles. 

The maximum force of static friction between an object and a surface is proportional to the normal force 

acting on the object. In general, 

          

Where,    is the coefficient of static friction and    is the magnitude of the normal force. When an 

object slides over a surface, the direction of the force of kinetic friction     is opposite the direction of 

motion of the object relative to the surface and is also proportional to the magnitude of the normal force. 

The magnitude of this force is given by  

          

, where    is the coefficient of kinetic friction. 

Example:-4 Experimental Determination of    and    

The following is a simple method of measuring coefficients of friction: Suppose a block is placed on a 

rough surface inclined relative to the horizontal, as shown in Figure below. 

The incline angle is increased until the block starts to move. Show that by measuring the critical angle 

   at which this slipping just occurs, we can obtain    . 

Newton’s second law applied to the block for this balanced 

situation gives 

 

Example 5 the Sliding 

Hockey Puck 

A hockey puck on a frozen pond is given an initial speed of 20m/s. If 

the puck always remains on the ice and slides 115 m before coming 
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to rest, determine the coefficient of kinetic friction between the puck and ice. 

 

 

 

 

 

 

Example 6 Acceleration of Two Connected Objects When Friction Is Present 

A block of mass m1 on a rough, horizontal surface is connected to a ball of mass m2 by a light weight 

cord over a light weight, frictionless pulley, as shown in Figure below. A force of magnitude F at an 

angle   with the horizontal is applied to the block as shown. The coefficient of kinetic friction between 

the block and surface is    . Determine the magnitude of the acceleration of the two objects. 

 

 

 

 

 

Solution 

The free-body diagrams assuming that the block accelerates to the right and the ball accelerates upward. 

 

  



25 |  P a g e
 

 

 

 

Applying Newton’s second law to both objects and assuming the motion of the block is to the right, we 

obtain 

 

 

Solving for a, we obtain 

 

Exercise 

1. A 3kg object undergoes an acceleration given by a = (2i + 5j) m/s
2

. Find the resultant force acting 

on it and the magnitude of the resultant force. 

2. If a man weighs 900 N on the Earth, what would he weigh on Jupiter, where the acceleration due 

to gravity is 25.9 m/s
2

? 

3. A block is given an initial velocity of 5m/s up a 

frictionless 20° incline. How far up the incline 

does the block slide before coming to rest? 

 

4. A 5kg object placed on a frictionless, horizontal table is connected to a string that passes over a 

pulley and then is fastened to a hanging 9kg object, as in Figure below. Draw free-body diagrams of 

both objects. Find the acceleration of the two objects and the tension in the string. 
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5. A block of mass 3kg is pushed up against a wall by a force P that makes a 50° angle with the 

horizontal as shown in Figure below. The coefficient of static friction between the block and the 

wall is 0.25. Determine the possible values for the magnitude of P that allow the block to remain 

stationary. 

 

 

 

Newton’s Second Law Applied to Uniform Circular Motion 

We discussed that a particle in uniform circular motion, in which the particle moves with constant speed 

  in a circular path having a radius  . The particle experiences an acceleration that has a magnitude 

 

 

The acceleration is called centripetal acceleration because ac is directed toward the center of the circle. 

If Newton’s second law is applied along the radial direction, the net force causing the centripetal 

acceleration can be related to the acceleration as follows: 

 

 

Note:  

A force causing a centripetal acceleration acts toward the center of the circular path and causes a change in 

the direction of the velocity vector. If that force should vanish, the object would no longer move in its 

circular path; instead, it would move along a straight-line path tangent to the circle. 

Analysis Model 
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Imagine a moving object that can be modeled as a particle. If it moves in a circular path of radius r at a 

constant speed v, it experiences a centripetal acceleration. Because the particle is accelerating, there must 

be net force acting on the particle. That force is directed toward the center of the circular path and is given 

by 

 

 

 

 

 

Examples 

 the tension in a string of constant length acting on a rock twirled in a circle 

 the gravitational force acting on a planet traveling around the Sun in a perfectly circular orbit  

  the magnetic force acting on a charged particle moving in a uniform magnetic field  

 the electric force acting on an electron in orbit around a nucleus in the Bohr model of the 

hydrogen atom 

Example 7 the Conical Pendulum 

A small ball of mass   is suspended from a string of length   . The ball revolves 

with constant speed   in a horizontal circle of radius r as shown in Figure below. 

Because the string sweeps out the surface of a cone, the system is known as a 

conical pendulum. Find an expression for  . 

 

 

 

The free body diagram for the conical pendulum given above is 
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We model it as a particle in equilibrium in the vertical direction.  

 

 

It experiences a centripetal acceleration in the horizontal direction, so it is modeled as a particle in 

uniform circular motion in this direction. 

  

 

  

Example 8 What Is the Maximum Speed of the Car? 

A 1 500-kg car moving on a flat, horizontal road negotiates a curve as shown in Figure below. If the 

radius of the curve is 35m and the coefficient of static friction between the tires and dry pavement is 

0.523, find the maximum speed the car can have and still make the turn successfully. 

 

 

 

 

 

 

Solution 

The curved roadway is part of a large circle so that the car is moving in a circular path. We model the 

car as a particle in uniform circular motion in the horizontal direction. 
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Energy and Energy Transfer  

Work Done by a Constant Force 

Definition: 

Work done by a constant force is defined as the product of the component of the force in the direction of 

the displacement and the magnitude of the displacement. 

Consider the diagram shown below: 

 

 

 

 

 

If an object undergoes a displacement  ⃗ under the action of a constant force F, the work done by the 

force is 
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Work is a scalar quantity, and its units are force multiplied by length. Therefore, the SI unit of work is 

the newton meter (N· m). This combination of units is used so frequently that it has been given a name 

of its own: the joule ( J). 

Example 1:- A man cleaning a floor pulls a vacuum cleaner with a force of magnitude F= 50N at an 

angle of 30° with the horizontal. Calculate the work done by the force on the vacuum cleaner as the 

vacuum cleaner is displaced 3m to the right. 

Example 2: - A particle moving in the xy plane undergoes a displacement r = (2i + 3j) m as a constant 

force F = (5i + 2j) N acts on the particle. Determine the amount of energy transferred to the particle. 

Work Done by a Varying Force 
Consider an object that is being displaced along the x-axis from xi to xf due to the application of a 

varying positive force F(x), as shown in the figure (a) below. To calculate the work done by this force, 

we imagine that the object undergoes a very small displacement    from x to      due to the effect of 

an approximate constant force F(x) as shown in figure (b). For this very small displacement, we 

represent the amount of work done by the force by the expression: 

  

Then, the total work done from xi to xf by the variable force F(x) is approximately equal to the sum of 

the large number of rectangles in figure (b), i.e. the total area under the force curve. Thus: 

 

In the limit where x approaches zero, the value of the sum in the last equation approaches the exact 

value of the area under the force curve, see figure (c). As you probably know from calculus, the limit of 

that sum is called an integral and is represented by: 
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Therefore, we can express the work done by a variable force F(x) on an object that undergoes a 

displacement from xi to xf as follows: 

 

 

 

Example: - The force acting on a particle is Fx = (       ) N, where x is in meters. (a) Make a plot of 

this force versus x from x = 0 to x = 3m. (b) Find the net work done by this force on the 

particle as it moves from x = 0 to x = 3m. ans: - -12J 

Example: - A force F = (4xi + 3yj) N acts on an object as the object moves in the x direction from the 

origin to x = 5m. Find the work done on the object by the force.  ans: - 50J 

Work done by a spring 

A spring is one type of common physical system in which the force (known as the spring force) varies 

with position. If the spring is stretched or compressed a small distance from equilibrium, the spring will 

exert a force on the block. This force is given by Hooke’s law as follows: 

      

Where x is the displacement of the block from its equilibrium position (x = 0) and k is a positive 

constant known as the spring constant (or the force constant). 

Consider the following mass spring system in which a block being pulled from xi = 0 to xf = xmax on a 

frictionless surface by a force Fapp. If the process is carried out very slowly, the applied force is equal in 

magnitude and opposite in direction to the spring force at all times.  

 

 

 

 

 

 

Therefore, the work done by this applied force (the external agent) on the block–spring system is 
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The work done by an applied force on a block–spring system between arbitrary positions of the block is: 

 

N.B This work is equal to the negative of 

the work done by the spring force for this 

displacement. 

Kinetic Energy and the Work–Kinetic Energy Theorem 

Consider a system consisting of a single object. The figure below shows a block of mass m moving 

through a displacement directed to the right under the action of a net force F, also directed to the right. 

 

 

 

 

 

 

Consider a particle of mass m, moving with acceleration a = a(x) along the x-axis under the effect of a 

net force F(x) that points along this axis. Thus, according to Newton‘s second law of motion we have 

 ( )      ( ). The work done by this net force on the particle as it moves from an initial position xi to 

a final position xf can be found as follows: 

  ∫ ( )   ∫  ( )   

Using                                                          ( )  
  

  
  

  

  
 

   ∫     ∫    
  

  

 
 

 
   

  
 

 
   

  

Kinetic Energy 

The kinetic energy K of a particle is defined as the product of one half of its mass and the square of its 

speed, 
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Kinetic energy is a scalar quantity and has the same units as work. In SI units we have: 

       
  

  
      

Thus,                                           
 

 
   

  
 

 
   

  

              

        

Is called work-energy theorem which states that ―the work done by the net force in displacing a 

particle is equal to the change in kinetic energy.‖ 

Change in kinetic energy due to friction can be written as follows: 

                   

Example:  - A box of mass         is initially at rest on a rough horizontal surface, where the 

coefficient of kinetic friction between the box and the surface is       . The box is then 

pulled horizontally by a force F =50N that makes an angle        with the horizontal.  

(a) Use the work-energy theorem to find the final speed of the box after it moves a distance of 4m.    

ans: - 3.35m/s 

(b) Repeat part (a) using Newtonian mechanics. ans: - 3.35m/s 

Example: - Car traveling at an initial speed v slides a distance d to a halt after its brakes lock. Assuming 

that the car‘s initial speed is instead 2v at the moment the brakes lock, estimate the distance 

it slides. 

Example: - A block of mass 1.6 kg is attached to a horizontal spring that has a force constant of 

         . The spring is compressed by 2cm and is then released from rest.  

(A) Calculate the speed of the block as it passes through the equilibrium position x = 0 if the surface is 

frictionless. Ans: -  0.5m/s 

(B) Calculate the speed of the block as it passes through the equilibrium position if a constant friction 

force of 4N retards its motion from the moment it is released. Ans: -  0.39m/s 

Potential Energy of a System 

Let us imagine a system consisting of a book and the Earth, interacting via the gravitational force. 

 

The work done by an external agent on the system of the 

 book and the Earth as the book is lifted from a height ya 

 to a height yb is equal to           
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The work done by the external agent on the system (object and Earth) as the object undergoes this 

upward displacement is given by the product of the upward applied force Fapp and the upward 

displacement        

          (   ) (   )         (     ) 

Thus, we can identify the quantity mgy as the gravitational potential energy Ug 

       

Hence,                                                          

      

Example: - A 7kg bowling ball held by a careless bowler slips from the bowler‘s hands and drops on the 

bowler‘s toe which is about 0.03m above the floor. Choosing floor level as the     point of your 

coordinate system, estimate the change in gravitational potential energy of the ball–Earth system as the 

ball falls from 0.5m height. Ans: -         

The Isolated System–Conservation of Mechanical Energy 

From work energy theorem and definition of gravitational potential energy 

                                                                and       

Hence,                                                            

 (   )    

     

Where,       is called mechanical energy 

Conservation of mechanical energy is defined as follows: 

                     From                                               
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Hence, the principle of conservation of mechanical energy states that “for an isolated system total 

mechanical energy of a system is conserved.” 

Example: - A ball of mass m is dropped from a height h above the 

ground, as shown below 

 

(A) Neglecting air resistance, determine the speed of the 

       ball when it is at a height y above the ground. 

  Ans: -  

 

Example: - A pendulum consists of a 

sphere of mass m attached to a light cord of length L, as      shown in the 

figure below. The sphere is released from rest at point A when the cord 

makes an angle   with the vertical, and the pivot at P is frictionless. 

(A) Find the speed of the sphere when it is at the lowest point 

 

Ans: -  

 

 

Example: - A bead slides without friction around a loop-the-loop. The bead is released from a height h 

=3.5R. (a) What is its speed at point A? (b) How large is the normal force on it if its mass is 

5g? 

 

 

Ans  

(a)    √    

(b)        

 

 

Example: - Two objects are connected by a light string passing 

over a light frictionless pulley as shown in Figure below. 



36 |  P a g e
 

The object of mass 5kg is released from rest. Using the principle of conservation of energy, (a) 

determine the speed of the 3kg object just as the 5kg object hits the ground. (b) Find the 

maximum height to which the 3kg object rises. 

 

Answer: - 

(a) 4.43m/s 

(b) 5m 

 

 

 

 

 

 

Elastic Potential Energy 

Previously we learned that the work done by an external applied force Fapp on a system consisting of a 

mass connected to the spring is given by:  

 

 

Hence, the elastic potential energy function associated with the mass–spring system is defined by: - 

   
 

 
    

The elastic potential energy of the system can be thought of as the energy stored in the deformed spring 

(one that is either compressed or stretched from its equilibrium position). 

Example: - A block having a mass of 0.8kg is given an initial velocity            to the right and 

collides with a spring of negligible mass and force constant          , as shown in the 

figure below.  

 

 

 

 

(A) Assuming the surface to be frictionless, calculate the maximum compression of the spring after the 

collision. Ans: - 0.15m 
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Conservative and Non-conservative Forces 

Conservative Forces 

Conservative forces have these two equivalent properties: 

1) The work done by a conservative force on a particle moving between any two points is 

independent of the path taken by the particle. 

2) The work done by a conservative force on a particle moving through any closed path is zero. (A 

closed path is one in which the beginning and end points are identical.) 

The gravitational force is one example of a conservative force, and the force that a spring exerts on any 

object attached to the spring is another 

 Non-conservative Forces 

A force is non-conservative if it does not satisfy properties 1 and 2 for conservative forces. Non-

conservative forces acting within a system cause a change in the mechanical energy of the system. Force 

of friction is an example of non-conservative force that depends on path hence brings change in 

mechanical energy or dissipation of energy. 

Thus, the change in mechanical energy for non-conservative forces can be written as: 

               

Example: - A 3kg crate slides down a ramp. The ramp is 1m in length and inclined at an angle of 30°, as 

shown in the figure below. The crate starts from rest at the top, experiences a constant friction force of 

magnitude 5N, and continues to move a short distance on the horizontal floor after it leaves the ramp. 

Use energy methods to determine the speed of the crate at the bottom of the ramp. 

Ans: - 2.54m/s 

 

 

 

 

 

Example: - A skier starts from rest at the top of a frictionless incline of height 20m, as shown in the 

figure below. At the bottom of the incline, she encounters a horizontal surface where the 

coefficient of kinetic friction between the skis and the snow is 0.21. How far does she travel 

on the horizontal surface before coming to rest, if she simply coasts to a stop? Ans: - 95.2m 
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Example: -Two blocks are connected by a light string that passes over a frictionless pulley, as shown in 

the figure below. The block of mass m1 lies on a horizontal surface and is connected to a 

spring of force constant k. The system is released from rest when the spring is un-stretched. 

If the hanging block of mass m2 falls a distance h before coming to rest, calculate the 

coefficient of kinetic friction between the block of mass m1 and the surface. 

 

 

 

Ans: -  

 

Linear Momentum and Collisions 

Consider Newton‘s second law, when a net force F acts on a particle of mass m,  ⃗      ⃗, which can be 

generalized for constant and variable mass system as follows: 

 

According to this equation, the net force F acting on a particle is equal to 

the change in the product mv per unit time. 

Definition:   

The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with 

a velocity  ⃗⃗⃗ is defined to be the product of the mass and velocity: 

 ⃗⃗    ⃗ 

Linear momentum is a vector quantity and its SI unit is kg · m/s. If a particle is moving in an arbitrary 

direction, P must have three components, 

 

Newton’s second law for a particle can be written as follows: 

 

―The time rate of change of the linear momentum of a particle is equal to the net force acting on the 

particle.‖ 
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Principle of conservation of linear momentum 
Consider a system of n particles with linear momenta P1, P2, . . . , and Pn. Some forces on these particles 

are external to the system, and others are internal.  

Let P be the total linear momentum of the system, which is the vector sum of all individual momenta. 

Thus: 

 

When differentiating this equation with respect to time, we get: 

 

Where ∑   represents the sum of all forces (internal plus external) exerted on the particles of the 

system. Then 

 

By Newton‘s third law, the internal forces form action-reaction pairs and their sum cancel each other. 

 

For an isolated system, the sum of the external forces is zero. Hence,  

  ⃗⃗    

 ⃗⃗   ⃗⃗  

This is the law of conservation of momentum which states that “the total linear momentum of an 

isolated system of particles remains constant.” 
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Fluid Mechanics 

Elastic Properties of Solids 
All solids are to some extent elastic. This means that we can change their dimensions slightly by pulling, 

pushing, twisting, and/or compressing them. We shall discuss the elastic properties of solids by 

introducing the concepts of stress and strain. 

Stress: 

Stress is the magnitude of the applied external force that acts perpendicularly on a unit area of the 

object. 

Stress is a quantity that is proportional to the force causing a deformation; more specifically, stress is the 

external force acting on an object per unit cross-sectional area. 

        
  
 

 

Strain: 

Strain is a measure of the degree of deformation of the object. 

Strain in this case is defined as the ratio of the change in length    to the 

original length L. 

        
  

 
 

 

 

Figure: A rod of height L and cross-sectional area A, the rod stretches by an amount    after 

application of a tensile stress. 

           It is found that for small stresses, stress is proportional to strain. The proportionality constant is 

called the elastic modulus and it depends on the material being deformed, as well as on the nature of the 

deformation. Therefore: 

                 
      

      
 

Three common types of deformation are represented by (1) the resistance of a solid to elongation under 

a load, characterized by Young‘s modulus Y; (2) the resistance of a solid to the motion of internal planes 

sliding past each other, characterized by the shear modulus S; and (3) the resistance of a solid or fluid to 

a volume change, characterized by the bulk modulus B. 
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Young’s Modulus: Elasticity in Length 

Measures the resistance of a solid to a change in its length 

Young‘s Modulus measures the resistance of a solid to a change in its length, which indicates its 

stiffness. 

Consider a metallic long rod of original length L and cross sectional area A. When an external force 

   is applied perpendicularly to the cross sectional area A of a rod, its internal forces resist its distortion. 

 

 

 

 

The relation between the tensile stress and the tensile strain is linear when the rod is in its elastic range. 

When the stress exceeds what is called the elastic limit, the rod is permanently distorted and will not 

return to its original shape after the stress is removed. As the stress is increased even further, the rod will 

ultimately break. 

 

 

 

 

 

 

 

Figure: The stress versus strain curve for an elastic solid 

Example: - 

Consider a stage design by which a cable is used to support an actor as he swung onto the stage.  

Suppose that the tension in the cable is 940 N as 

the actor reaches the lowest point. What 

diameter should a 10m long steel wire have if 

we do not want it to stretch more than 0.5 cm 

under these conditions? 
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Solution 

 

 

 

 

 

 

Shear Modulus: 

Measures the resistance to motion of the planes of solids when sliding over each other 

 

Another type of deformation occurs when a solid is subject to a force applied parallel to one of its 

surfaces while the opposite surface is kept fixed.  

    Figure below shows a cylindrical rod subjected to a linear or torsional shear stress deforming it by an 

amount    due to a force     parallel to the surface area A. As a final result, the shape of the rod will 

attain equilibrium when the effect of the shear force       balances exactly the internal shear forces.  

 

 

 

 

 

For linear shearing, we define the shearing stress and the shearing strain as follows: 

 

 

 

 

 

 

 

 

S is also called the modulus of rigidity or the torsion modulus and is significant only for solids. 
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Example: - A steel cable 3cm
2
 in cross-sectional area has a mass of 2.4kg per meter of length. If 500m 

of the cable is hung over a vertical cliff, how much does the cable stretch under its own weight? Ysteel = 

2   10
11

 N/m
2
. 

Bulk Modulus: 

Measures the resistance of a solid (or a liquid) to a change in its volume 

Another type of deformation occurs when an object is subject to an equal increase in normal forces 

acting on all its faces. For such a study, it is appropriate to define the pressure P as the force acting 

perpendicularly on a unit area of the object. That is: 

  

 

When the force F on each face increases, the pressure will increase too and consequently the volume V 

will decrease as shown below: 

 

  

Hence 
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Example: - 

A solid brass sphere is initially surrounded by air, and the air pressure exerted on it is      /m
2
 

(normal atmospheric pressure). The sphere is lowered into the ocean to a depth where the pressure is 

      N/m
2
. The volume of the sphere in air is 0.50 m

3
. By how much does this volume change once 

the sphere is submerged?  

Solution 

 

 

 

 

 

 

Application 

Pre-stressed Concrete 

If the stress on a solid object exceeds a certain value, the object fractures. The maximum stress that can be 

applied before fracture occurs depends on the nature of the material and on the type of applied stress. For 

example, concrete has a tensile strength of about       N/m
2
, a compressive strength of         

N/m
2
, and shear strength of       N/m

2
. If the applied stress exceeds these values, the concrete 

fractures. It is common practice to use large safety factors to prevent failure in concrete structures.  
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(a) A concrete slab with no reinforcement tends to crack under a heavy load.  

(b) The strength of the concrete is increased by using steel reinforcement rods.  

(c) The concrete is further strengthened by pre-stressing it with steel rods under tension. 

Fluid mechanics 
A fluid is a collection of molecules that are randomly arranged and held together by weak cohesive 

forces and by forces exerted by the walls of a container. Both liquids and gases are fluids.  

Pressure 
Fluids do not sustain shearing stresses or tensile stresses; thus, the only stress 

that can be exerted on an object submerged in a static fluid is one that tends to 

compress the object from all sides. In other words, the force exerted by a static 

fluid on an object is always perpendicular to the surfaces of the object. 

 

 

 

At any point on the surface of a submerged object, the force exerted by the fluid is perpendicular to the 

surface of the object. The force exerted by the fluid on the walls of the container is perpendicular to the 

walls at all points. 

Consider the following simple device used to measure the pressure inside a fluid 
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If F is the magnitude of the force exerted on the piston and A is the surface area of the piston, then the 

pressure P of the fluid at the level to which the device has been submerged is defined as  

  
 

 
 

The SI unit for pressure is Pascal 

          

Example: - The mattress of a water bed is 2m long by 2m wide and 3cm deep. 

(A) Find the weight of the water in the mattress. 

                                                N 

(B) Find the pressure exerted by the water on the floor when the bed rests in its normal position. 

 

Variation of Pressure with Depth 

Now consider a liquid of density   at rest as shown in figure below. We assume that   is uniform 

throughout the liquid; this means that the liquid is incompressible.  

    Let us select a sample of the liquid contained within an imaginary cylinder of cross-sectional area   

extending from depth   to depth    . 

The net force exerted on the parcel of fluid must be zero because it is in 

equilibrium. 

 

 

 

 

Where,  

 

 

Fluid dynamics 
When fluid is in motion, its flow can be characterized as being one of two main types.  
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Laminar flow 
The flow is said to be steady, or laminar, if each particle of the fluid follows a smooth path, such that 

the paths of different particles never cross each other, In steady flow, the velocity of fluid particles 

passing any point remains constant in time. 

 

A particle in laminar flow follows a streamline, and at each point 

along its path the particle‘s velocity is tangent to the streamline. 

 

Turbulent flow 
Turbulent flow is irregular flow characterized by small whirlpool-like regions. 

Viscosity 

Viscosity is commonly used in the description of fluid flow to characterize the degree of internal friction 

in the fluid. This internal friction, or viscous force, is associated with the resistance that two adjacent 

layers of fluid have to moving relative to each other. Viscosity causes part of the kinetic energy of a 

fluid to be converted to internal energy. 

In our model of ideal fluid flow, we make the following four assumptions: 

 The fluid is non-viscous. In a non-viscous fluid, internal friction is neglected. An object moving 

through the fluid experiences no viscous force. 

 The flow is steady. In steady (laminar) flow, the velocity of the fluid at each point remains 

constant. 

 The fluid is incompressible. The density of an incompressible fluid is constant. 

 The flow is irrotational. In irrotational flow, the fluid has no angular momentum about any 

point. If a small paddle wheel placed anywhere in the fluid does not rotate about the wheel‘s 

center of mass, then the flow is irrotational. 

Consider an ideal fluid flowing through a pipe of non-uniform size 
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The fluid is incompressible and because the flow is steady, the mass that crosses A1 in a time interval 

   must equal the mass that crosses A2 in the same time interval. 

      

          

                

                    

           

          

This expression is called the equation of continuity for fluids. It states that ―the product of the area and 

the fluid speed at all points along a pipe is constant for an incompressible fluid.‖ 

Example: - 1 A water hose 2.5cm in diameter is used by a gardener to fill a 30L bucket. The gardener 

notes that it takes 1.00 min to fill the bucket. A nozzle with an opening of cross-sectional area 0.5cm
2
 is 

then attached to the hose. The nozzle is held so that water is projected horizontally from a point 1m 

above the ground. Over what horizontal distance can the water be projected? 

Solution 
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Bernoulli’s Equation 
As a fluid moves through a region where its speed and/or elevation above the Earth‘s surface changes, 

the pressure in the fluid varies with these changes. 

Consider the flow of a segment of an ideal fluid through a non-uniform pipe in a time interval 't, as 

illustrated in Figure below 

 

 

 

 

 

The work done by the force on the segment in a time interval    is 

  (     )   

Part of this work goes into changing the kinetic energy of the segment of fluid, and part goes into 

changing the gravitational potential energy of the segment–Earth system. 
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Thus, the change in the kinetic energy of the segment of fluid is 

 

Consequently, the change in gravitational potential energy is 

 

The total work done on the system by the fluid outside the segment is equal to the change in mechanical 

energy of the system: 

        

 

 

 

 

This is Bernoulli‘s equation as applied to an ideal fluid. It is often expressed as 

 

Example: - 1 

A horizontal pipe 10cm in diameter has a smooth reduction to a pipe 5cm in diameter. If the pressure of 

the water in the larger pipe is       Pa and the pressure in the smaller pipe is        Pa, at what rate 

does water flow through the pipes? 

Pascal‘s law states that when pressure is applied to an enclosed fluid, the pressure is transmitted 

undiminished to every point in the fluid and to every point on the walls of the container. 

When an object is partially or fully submerged in a fluid, the fluid exerts on the object an upward force 

called the buoyant force. According to Archimedes‘ principle, the magnitude of the buoyant force is 

equal to the weight of the fluid displaced by the object: 

  

You can understand various aspects of a fluid‘s dynamics by assuming that the fluid is non-viscous and 

incompressible, and that the fluid‘s motion is a steady flow with no rotation. 
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Two important concepts regarding ideal fluid flow through a pipe of non-uniform size are as follows: 

1. The flow rate (volume flux) through the pipe is constant; this is equivalent to stating that the 

product of the cross-sectional area A and the speed v at any point is a constant. This result is 

expressed in the equation of continuity for fluids: 

 

 

 

2. The sum of the pressure, kinetic energy per unit volume, and gravitational potential energy per 

unit volume has the same value at all points along a streamline. This result is summarized in 

Bernoulli‘s equation: 
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Heat and Thermodynamics 

Just read only your exercise books about heat, thermodynamics laws etc 
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Oscillations and Mechanical Waves 

Simple harmonic motion 
Motion of an Object Attached to a Spring As a model for simple harmonic motion; 

Consider a block of mass m attached to the end of a spring, with the block free to move on a frictionless, 

horizontal surface 

When the spring is neither stretched nor compressed, the block is at rest at the position called the 

equilibrium position of the system, which we identify as x = 0. We know from experience that such a 

system oscillates back and forth if disturbed from its equilibrium position. 

We can understand the oscillating motion of the block in Figure 15.1 qualitatively by first recalling that 

when the block is displaced to a position x, the spring exerts on the block a force that is proportional to 

the position and given by Hooke’s law 

 

We call Fs a restoring force because it is always directed toward the equilibrium position and therefore 

opposite the displacement of the block from equilibrium. That is, when the block is displaced to the right 

of x= 0 in Figure, the position is positive and the restoring force is directed to the left. When the block is 

displaced to the left of       as in Figure, the position is negative and the restoring force is directed to 

the right.  

When the block is displaced from the equilibrium point and released, it is a particle under a net force 

and consequently undergoes acceleration. Applying the particle under a net force model to the motion of 

the block, with the above providing the net force in the x direction, we obtain 

 

That is, the acceleration of the block is proportional to its position, and the direction of the acceleration 

is opposite the direction of the displacement of the block from equilibrium. Systems that behave in this 

way are said to exhibit simple harmonic motion. An object moves with simple harmonic motion 
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whenever its acceleration is proportional to its position and is oppositely directed to the displacement 

from equilibrium. 

 

Quiz A block on the end of a spring is pulled to position      and released from rest. In one full 

cycle of its motion, through what total distance does it travel? (a) A/2     (b) A         (c) 2A       (d) 4A 

Particle in Simple Harmonic Motion 

The motion described in the preceding section occurs so often that we identify the particle in simple 

harmonic motion model to represent such situations. To develop a mathematical representation for this 

model, we will generally choose x as the axis along which the oscillation occurs; hence, we will drop the 

subscript-x notation in this discussion. 

 

The above equation can be written in the form 

 

The following cosine function is a solution to the differential equation: 

 

To show explicitly that this solution satisfies Equation, notice that 
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A, called the amplitude of the motion, is simply the maximum value of the position of the particle in 

either the positive or negative x direction.  

The constant   is called the angular frequency, and it has units of radians per second. It is a measure of 

how rapidly the oscillations are occurring; the more oscillations per unit time, the higher the value of   

 

 

An x–t graph for a particle undergoing simple harmonic motion 

The period T of the motion is the time interval required for the particle to go through one full cycle of its 

motion. That is, the values of x and v for the particle at time t equal the values of x and   at time t + T. 

Because the phase increases by    radians in a time interval of T, 

 

Simplifying this expression gives 

 

The inverse of the period is called the frequency f of the motion. Whereas the period is the time interval 

per oscillation, the frequency represents the number of oscillations the particle undergoes per unit time 

interval: 

 

The units of f are cycles per second, or hertz (Hz). 
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The period and frequency of the motion for the particle in simple harmonic motion in terms of the 

characteristics m and k of the system as 

 

We can obtain the velocity and acceleration of a particle undergoing simple harmonic motion 

 

Therefore, the maximum values of the magnitudes of the velocity and acceleration are 

 

 

Graphical representation of simple harmonic motion 

Example: - A 200g block connected to a light spring for which the force constant is 5N/m is free to 

oscillate on a frictionless, horizontal surface. The block is 
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displaced 5 cm from equilibrium and released from rest as in Figure. 

(A) Find the period of its motion. 

 

  

Energy of the Simple Harmonic Oscillator 
Kinetic energy of a simple harmonic oscillator is given by: 

 

Potential energy of a simple harmonic oscillator 

 

The total mechanical energy of the simple harmonic oscillator can be given as 

 

  
 

 
    

That is, the total mechanical energy of a simple harmonic oscillator is a constant of the motion and is 

proportional to the square of the amplitude. 

Finally, we can obtain the velocity of the block at an arbitrary position by expressing the total energy of 

the system at some arbitrary position   as 

  

The Simple Pendulum 
The simple pendulum is another mechanical system that exhibits 

periodic motion. It consists of a particle-like bob of mass m 

suspended by a light string of length L that is fixed at the upper end 

as shown in Figure. The motion occurs in the vertical plane and is 

driven by the gravitational force. We shall show that, provided the 
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angle u is small (less than about 108), the motion is very close to that of a simple harmonic oscillator. 

 

 

Therefore, for small angles, the equation of motion becomes 

 

The angular frequency   and the period of the motion are given by: 

 

 

The simple pendulum can be used as a timekeeper because its period depends only on its length   and 

the local value of  . 

Example 

1.  If a simple pendulum oscillates with small amplitude and its length is doubled, what happens to 

the frequency of its motion? (a) It doubles. (b) It becomes  √  times as large. (c) It becomes half 

as large. (d) It becomes   √  times as large. (e) It remains the same. 

2. An object–spring system moving with simple harmonic motion has amplitude A. When the 

kinetic energy of the object equals twice the potential energy stored in the spring, what is the 

position x of the object? (a) A    (b) 
 

 
        (c) 

 

√ 
    (d) 0    (e) none  

3. An object of mass 0.4 kg, hanging from a spring with a spring constant of 8N/m, is set into an 

up-and down simple harmonic motion. What is the magnitude of the acceleration of the object 

when it is at its maximum displacement of 0.1m?                                           (a) zero        (b) 0.45 

m/s
2
           (c) 1m/s

2
          (d) 2m/s

2
         (e) 2.4 m/s

2 
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Wave and its characteristics 
Wave motion is the transfer of energy through space without the accompanying transfer of matter. In the 

list of energy transferring mechanisms the two mechanisms depend on mechanical waves and 

electromagnetic radiation. 

The two main types of wave are mechanical waves and electromagnetic waves. Mechanical wave is the 

propagation of a disturbance through a medium, example: - water waves, sound waves, waves on a string. 

Electromagnetic waves do not require a medium to propagate; some examples of electromagnetic waves 

are visible light, radio waves, television signals, and x-rays. 

The two types of mechanical wave are: transverse wave and longitudinal wave. 

A transverse wave is one in which the elements of the medium move in a direction perpendicular to the 

direction of propagation. An example is a wave on a taut string.  

A longitudinal wave is one in which the elements of the medium move in a direction parallel to the 

direction of propagation. Sound waves in fluids are longitudinal. 
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 Electro-magnetism  

ELECTROSTATICS 
The fundamental forces of nature are: - gravitational force, electromagnetic force, weak nuclear force and 

strong nuclear force.  

The electromagnetic force between charged particles is one of the fundamental forces of nature. 

Charge 
In a series of simple experiments, it was found that there are two kinds of electric charges, which were 

given the names positive and negative by Benjamin Franklin (1706–1790). We identify negative charge as 

that type possessed by electrons and positive charge as that possessed by protons.  

Properties of Electric Charges 

 There are two kinds of charges in nature; charges of opposite sign attract one another and charges 

of the same sign repel one another. 

 Total charge in an isolated system is conserved. 

Charge can be transferred between different materials using different charge transferring mechanisms i.e. 

conduction, induction, rubbing. 

 Charge is quantized. 

In 1909, Robert Millikan (1868–1953) discovered that electric charge always occurs as some integral 

multiple of a fundamental amount of charge  . The electric charge q is said to be quantized, where q is the 

standard symbol used for charge as a variable. That is, electric charge exists as discrete ―packets,‖ and we 

can write      , where N is some integer. 
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Coulomb’s Law 
Charles Coulomb (1736–1806) measured the magnitudes of the electric forces between charged objects 

using the torsion balance. Coulomb confirmed that the electric force between two small charged spheres  

 Is proportional to the inverse square of their separation distance r and directed along the line 

joining them; 

 Is proportional to the product of the charges q1 and q2 on the two particles; 

 is attractive if the charges are of opposite sign and repulsive if the charges have the same sign; 

 

  

Where, ke is a constant called the Coulomb constant. The SI unit of charge is the coulomb (C). 

 

 This constant is also written in the form 

   
 

    
 

Where, the constant    (lowercase Greek epsilon) is known as the permittivity of free space and has the 

value  

 

 

 

  

 

 

NB Electrical conductors are materials in which some of the electrons are free electrons1 that are 

not bound to atoms and can move relatively freely through the material; electrical insulators are 

materials in which all electrons are bound to atoms and cannot move freely through the material. 
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Example 1: The electron and proton of a hydrogen atom are separated (on the average) by a distance of 

approximately             . Find the magnitudes of the electric force and the gravitational force 

between the two particles. 

Example2: Consider three point charges of magnitudes           &        located at the 

corners of a right triangle as shown in the figure below. Find the resultant force exerted on     

 

 

 

 

 

 

Example 3: Three point charges lie along the x axis as shown in Figure 

below. The positive charge           

is at      , the positive charge         is at the origin, and the 

resultant force acting on q3 is zero. What is the x coordinate of q3? 

 

Example 4: Two identical small charged spheres, each having a mass of           , hang in equilibrium 

as shown in Figure below. The length of each string is 0.15m, and the angle   is 5°. Find the magnitude of 

the charge on each sphere. 

  

 

 

 

The Electric Field 
The electric field vector E at a point in space is defined as the electric force Fe acting on a positive test 

charge q0 placed at that point divided by the test charge: 

  ⃗⃗  
  

  
 

The vector E has the SI units of newton per coulomb (N/C). 
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NB  ⃗⃗ is the field produced by some charge or charge distribution separate from the test charge—it is not 

the field produced by the test charge itself. Also, note that the existence of an electric field is a property of 

its source—the presence of the test charge is not necessary for the field to exist. The test charge serves as a 

detector of the electric field. 

Note that, an electric field exists at a point if a test charge at that point experiences an electric force. 

To determine the direction of an electric field, consider a point charge q as a source charge. This charge 

creates an electric field at all points in space surrounding it. A test charge q0 is placed at point P, a distance 

r from the source charge, as in Figure below. 

 

According to Coulomb’s law, the force exerted by q on the test charge is: 

 

 

 

Because the electric field at P, the position of the test charge, is defined by        , we find that at P, 

the electric field created by q is: 

 

 

 

Electric field due to a finite number of point charges 

At any point P, the total electric field due to a group of source charges equals the vector sum of the electric 

fields of all the charges. 

  

 

Example 1: A charge         is located at the origin, and a second charge         is located on the 

x axis, 0.3m from the origin. Find the electric field at the point P, which has coordinates (0, 0.4) m. 
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Example 1:  An electric dipole is defined as a positive charge q and a negative charge    separated by a 

distance 2a. For the dipole shown in Figure below, find the electric field  ⃗⃗ at P due to the dipole, where P 

is a distance     a from the origin. 

 

 

 

 

 

 

Electric Field of a Continuous Charge Distribution 
The electric field at P due to a continuous charge distribution is the vector 

sum of the fields    due to all the elements    of the charge distribution. 

 

 

 

 

 

The total electric field at P due to all elements in the charge distribution is approximately 

 

 

Where, the index i refers to the i
th

 element in the distribution. Because the charge distribution is modeled 

as continuous, the total field at P in the limit      is 
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Charge density 

Volume charge density 

If a charge Q is uniformly distributed throughout a volume V, the volume charge density is defined by: 

  
 

 
 

Surface charge density 

If a charge Q is uniformly distributed on a surface of area A, the surface charge density  (lowercase Greek 

sigma) is defined by: 

  
 

 
 

 Linear charge density 

If a charge Q is uniformly distributed along a line of length  , the linear charge density  is defined by: 

  
 

 
 

If the charge is non-uniformly distributed over a volume, surface, or line, the amounts of charge dq in a 

small volume, surface, or length element are: 

 

 

Example: A rod of length L has a uniform positive charge per unit length   and a total charge Q. Calculate 

the electric field at a point P that is located along the long axis of the rod and a distance a from one end. 

Solution 
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Example: A ring of radius a carries a uniformly distributed positive total charge Q. Calculate the electric 

field due to the ring at a point P lying a distance x from its center along the central axis perpendicular to 

the plane of the ring: 

Solution  

The magnitude of the electric field at P due to the 

segment of charge dq is 

 

 

 

 

Example: A disk of radius R has a uniform surface charge density. 

Calculate the electric field at a point P that lies along the central 

perpendicular axis of the disk and a distance x from the center of 

the disk: 

Solution: 

The ring of radius r and width dr shown in Figure has a surface 

area equal to       . 
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Electric Field Lines 

Electric field lines describe an electric field in any region of space. The number of lines per unit area 

through a surface perpendicular to the lines is proportional to the magnitude of E in that region. 

Properties of electric field lines 

i. The electric field lines due to a positive source charge indicate radially out ward. Whereas, the 

electric field lines due to a negative source charge are radially in ward. 
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ii. No two electric field lines will cross each other. (are parallel) 

iii. The number of field lines in a given space indicates the strength of the electric field at that 

position (the field lines are close together where the electric field is strong and far apart where 

the field is weak). 

Motion of Charged Particles in a Uniform Electric Field 

 

When a particle of charge q and mass m is placed in an electric field E, the electric force exerted on the 

charge is qE. If this is the only force exerted on the particle, it must be the net force and causes the particle 

to accelerate according to Newton’s second law. Thus,  

 

 

The acceleration of the particle is therefore 

  
  

 
 

If E is uniform (that is, constant in magnitude and direction), then the 

acceleration is constant. If the particle has a positive charge, its acceleration is in 

the direction of the electric field. If the particle has a negative charge, its 

acceleration is in the direction opposite the electric field. 

Example: A positive point charge q of mass m is released from rest in a uniform 

electric field E directed along the x axis, as shown in Figure below. Find an 

expression for the position, velocity and work done due to its motion. 

Solution  

 

 

 

Example: An electron enters the region of a uniform electric field as shown in Figure below, with    

     m/s and        N/C. The horizontal length of the plates is       . 
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(A) Find the acceleration of the electron 

while it is in the electric field. 

(B) If the electron enters the field at time       , find the time at which it leaves the field. 

Exercise 

1. Three point charges are located at the corners of an equilateral 

triangle as shown in Figure below. Calculate the resultant 

electric force on the     charge. 

 

 

 

2. Two small beads having positive charges 3q and q are fixed at the opposite ends of a horizontal, 

insulating rod, extending from the origin to the point x = d. As shown in Figure below, a third 

small charged bead is free to slide on the rod. At what position is the third bead in equilibrium? 

Can it be in stable equilibrium? 
 

 

3. Determine the point (other than infinity) at which the 

electric field is zero. 
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4. Consider an infinite number of identical charges (each of charge q) placed along the x axis at 

distances a, 2a, 3a, 4a, . . . , from the origin. What is the electric field at the origin due to this 

distribution? Suggestion: Use the fact that 

 

 

Electric potential 

For an infinitesimal displacement    of a charge, the work done by the electric field on the charge is 

        . As this amount of work is done by the field, the potential energy of the charge–field system 

is changed by an amount          . 

 

For a finite displacement of the charge from point A to point B, the change in potential energy of the 

system 

                                                             ∫     
 

 
 

The potential difference         between two points A and B in an electric field is defined as the 

change in potential energy of the system when a test charge is moved between the points divided by the 

test charge q0: 

 

 

The potential energy per unit charge      is independent of the value of qo and has a value at every point 

in an electric field and is called the electric potential.  

Electric potential is a scalar characteristic of an electric field, independent of any charges that may be 

placed in the field. 

Because electric potential is a measure of potential energy per unit charge, the SI unit of both electric 

potential and potential difference is joules per coulomb, which is defined as a volt (V): 

Electric Potential and Potential Energy Due to Point Charges 

An isolated positive point charge q produces an electric field that is directed radially outward from the 

charge. To find the electric potential at a point located a distance r from the charge, we begin with the 

general expression for potential difference: 
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The electric potential created by a point charge at any distance r from the charge is 

 

 

 

The total electric potential at some point P due to several point charges is the sum of the potentials due to 

the individual charges. 

 

  

 

Example: A charge        is located at the origin, and a charge         is located at (0, 3) m, as 

shown in Figure below.  

(A) Find the total electric potential due to these charges at the point P, whose coordinates are (4, 0) m. 

 

 

 

 

 

 

 

(B) Find the change in potential energy of the system of two charges plus a charge        as the 

latter charge moves from infinity to point P 

 

Obtaining the 

Value of the 

Electric Field 
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from the Electric Potential 

The potential difference dV between two points a distance ds apart as  

         

If the electric field has only one component Ex, then           . Therefore,  

    
  

  
 

In general, the electric potential is a function of all three spatial coordinates. If  ( ) is given in terms of 

the Cartesian coordinates, the electric field components Ex, Ey, and Ez can readily be found from 

 (     ) as the partial derivatives: 

 

 

Example: if  (     )              , then find an expression for the electric field 

In vector notation, E is often written in Cartesian coordinate systems as 

 

Example:  

An electric dipole consists of two charges of equal magnitude and opposite sign separated by a distance 2a, 

as shown in Figure below. The dipole is along the x axis and is centered at the origin.  

(A) Calculate the electric potential at point P. 

 

 

 

(B) Calculate V and Ex at a point far from the dipole. 

If point P is far from the dipole, such that    , then    can be neglected in the term      and V  

becomes 

 

 

We can calculate the magnitude of the electric field at a point far from the dipole: 
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Electric Potential Due to Continuous Charge Distributions 

The electric potential dV at some point P due to the charge element dq is 

 

 

 

  

Example: (A) Find an expression for the electric potential at a point P located on the perpendicular 

central axis of a uniformly charged ring of radius a and total charge Q. 

 

 

 

 

(B) Find an expression for the magnitude of the electric field at 

point P. 

 

 

 

Example: A uniformly charged disk has radius a and surface charge 

density  . Find 

 (A) The electric potential and 
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(B) The magnitude of the electric field along the perpendicular central axis of the disk. 

 

 

Example: A rod of length   located along the   axis has a total charge   and a uniform linear charge 

density      . Find the electric potential at a point P located on the y axis a distance a from the origin 

We can express the potential at point P due to this element as 

 

 

 

 

 

This integral has the following value 

 

Example: An insulating solid sphere of radius R has a uniform positive volume charge density and total 

charge Q. 

(A) Find the electric potential at a point outside the sphere, that is, for     . Take the potential to 

be zero at     

We found that the magnitude of the electric field outside a uniformly charged sphere of radius R is 
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(B) Find the potential at a point inside the sphere, that is, for     . 
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Direct current circuits 

Current and Resistance 
The time rate at which charge flows through the area is defined as the current I. The direction of the 

current is the direction in which positive charges flow when free to do so. 

Whenever there is a net flow of charge through some region, an electric current is said to exist. 

Definition: - 

The current is the rate at which charge flows through this surface. 

  
  

  
 

If the rate at which charge flows varies in time, then the current varies in time; we define the 

instantaneous current I as the differential limit of average current: 

  
  

  
 

The SI unit of current is the ampere (A):          

Microscopic Model of Current 

Consider the current in a conductor of cross-sectional area A. The volume of a section of the conductor 

of length    shown in figure below is     . 

If n represents the number of mobile charge carriers per unit volume 

(the charge carrier density), the number of carriers is     . 

Therefore, the total charge    in this section is 

         

Where,   is the charge on each carrier. If the carriers move with a 

speed vd, the displacement they experience in the x direction in a 

time interval is        

 

Then  
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The speed of the charge carriers    is an average speed called the drift speed. 

Resistance 

Consider a conductor of cross-sectional area A carrying a current I. The current density J in the 

conductor is defined as the current per unit area. Because the current        , the current density is: 

 

 

 

Where J has SI units of A/m
2
 

Ohm’s Law 
The ratio of the current density to the electric field is a constant & that is independent of the electric 

field producing the current. 

     

Where,   is conductivity of the conductor. 

Materials that obey Ohm‘s law and hence demonstrate this simple relationship between E and J are said 

to be ohmic. 

Consider a uniform conductor of length   and cross-sectional area A. A potential difference       

   maintained across the conductor sets up an electric field E, and this field produces a current I that is 

proportional to the potential difference. 

      

Therefore, we can express the magnitude 

 of the current density in the wire as 

 

We can write the potential difference as 

 

The quantity        is called resistance of the conductor. Thus,  

  
  

 
 

The inverse of conductivity is resistivity   
 

 
. Hence,  
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(a)The current–potential difference curve for an ohmic material;  

(b) A nonlinear current–potential difference curve for a junction diode. This device does not obey Ohm‘s law. 

Exercise 

(A) Calculate the resistance per unit length of a Nichrome wire, which has a radius of 0.321 mm. 

[           ] 

            

(B) If a potential difference of 10V is maintained across a 1m length of the Nichrome wire, what 

is the current in the wire? 

 Ans: 2.2A 

Electrical power 

If a potential difference    is maintained across a circuit element, the power, or rate at which energy is 

supplied to the element, is 

          

The energy delivered to a resistor by electrical transmission appears in the form of internal energy in the 

resistor. 

Exercise 

A 10V battery is connected to a 120  resistor. Ignoring the internal resistance of the battery, calculate 

the power delivered to the resistor. 

Electromotive Force 

The emf of a battery is the maximum possible voltage that the battery 

can provide between its terminals. 

Because a real battery is made of matter, there is resistance to the flow 

of charge within the battery. This resistance is called internal 

resistance r. 
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Where,      ; R is the load resistance & r internal resistance 

Exercise: 

A battery has an emf of 12V and an internal resistance of 0.05 . Its terminals are connected to a load 

resistance of 3 . 

(A) Find the current in the circuit and the terminal voltage of the battery. 

(B) Calculate the power delivered to the load resistor, the power delivered to the internal 

resistance of the battery, and the power delivered by the battery. 

Resistors combination 

Resistors in Series 
For a series combination of two resistors, the currents are the same in both resistors because the amount 

of charge that passes through R1 must also pass through R2 in the same time interval. 

 

 

 

 

The equivalent resistance of a series connection of resistors is 

the numerical sum of the individual resistances and is always 

greater that any individual resistance. 

 

 

Resistors in parallel 
When resistors are connected in parallel the potential differences 

across the resistors is the same. 

 

The equivalent resistance of two or more resistors connected in 

parallel is equal to the sum of the inverses of the individual 

resistances. Furthermore, the equivalent resistance is always less 

than the smallest resistance in the group. 
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Exercise: - Three resistors are connected in parallel as shown in 

Figure below. A potential difference of 18 V is maintained between 

points a and b.  

a.  Find the current in each resistor and 

b. Power across each resistor 

 

 

Exercise: -When two unknown resistors are connected in series with a battery, the battery delivers 225 

W and carries a total current of 5A. For the same total current, 50W is delivered when the resistors are 

connected in parallel. Determine the values of the two resistors. 

Exercise: -Calculate the power delivered to each resistor in the circuit shown in Figure below. 

 

 

 

 

Exercise: -Consider the circuit shown in Figure below. Find (a) the current in the     resistor and (b) 

the potential difference between points a and b. 

 

 

 

Kirchhoff’s Rules 
The procedure for analyzing more complex circuits is greatly simplified if we use two principles called 

Kirchhoff‘s rules: 

1. Junction rule. The sum of the currents entering any junction in a circuit must equal the sum of 

the currents leaving that junction: 
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2. Loop rule. The sum of the potential differences across all elements around any closed circuit 

loop must be zero:  

 

When applying Kirchhoff‘s second rule in practice, we imagine traveling around the loop and consider 

changes in electric potential, note the following sign conventions when using the second rule: 

 Because charges move from the high-potential end of a resistor toward the low potential 

end, if a resistor is traversed in the direction of the current, the potential difference across the resistor is 

        . 

 

 

 If a resistor is traversed in the direction opposite the current, the potential difference across the 

resistor is     -   . 

 

 

 

 If a source of emf (assumed to have zero internal resistance) is traversed in the direction of the 

emf (from -ve to +ve), the potential difference is +ve. The emf of the battery increases the 

electric potential as we move through it in this direction. 

 

 

 

 If a source of emf (assumed to have zero internal resistance) is traversed in the direction opposite 

the emf (from +ve to -ve ), the potential difference is -ve (Fig. 28.15d). In this case 

 

 

Exercise: -A single-loop circuit contains two resistors and two batteries, as shown in Figure below. 

(Neglect the internal resistances of the batteries.) 
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(A) Find the current in the circuit. 

(B) What power is delivered to each resistor? What power is delivered by the 12-V battery? 

Exercise: - fine the currents in the circuit shown below 

 

 

 


